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J. Phys. A :  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Incoherent scattering of gamma rays in heavy atoms 

I. B. WHITTINGHAMt 
Department of Physics, Monash University, Clayton, Victoria, Australia 
M S .  received 12th May 1970 

Abstract. Exact relativistic differential cross sections for the incoherent 
scattering of gamma rays by the inner shell electrons of heavy atoms are 
developed from the second order S matrix element for the electron-photon 
interaction in the Furry picture. Electron binding is accounted for completely 
by using the bound electron propagator and Dirac eigenfunctions for the 
initial and final electron states. 

A pure Coulomb potential is used to calculate the energy spectrum and the 
differential cross section for 662 keV gamma rays scattered by the K electrons 
of lead. In  contrast with the results of Di Lazzaro and Missoni, the energy spec- 
trum maximum is displaced by loo& from the Compton energy towards higher 
photon energies, and there is no increase in the spectrum at the low-energy 
end. The relativistic results for the ratio of the bound electron to free electron 
cross sections are larger than the incoherent scattering function calculations 
and exceed unity for scattering angles above 52". 

1. Introduction 
Theoretical investigations of the incoherent scattering of photons by atomic 

electrons have until now been essentially non-relativistic in that they are based upon 
either the atomic form factor approximation, which is valid for low photon energies 
and low electron binding energies, or the incoherent scattering function approach, 
whose validity requires the photon energy to be appreciably greater than the electron 
binding energy. The form factor calculations, which originally used hydrogen wave 
functions (Wentzel 1929, Bloch 1934, Schnaidt 1934), successfully accounted for the 
scattering of x-rays by light atoms. Subsequently, Randles (1957), Standing and 
Jovanovich (1962) and Lambert et al. (1966) used relativistic wave functions in evalu- 
ating the form factor for the scattering of gamma rays in heavy atoms. The  incoherent 
scattering function approach has been employed predominantly in the investigation 
of the total x-ray scattering from light atoms (White-Grodstein 1957). Sujkowski 
and Nagel (1961) and Shimizu et al. (1965) have applied the incoherent scattering 
function to the scattering of gamma rays by individual atomic electrons, and the cross 
sections obtained using both non-relativistic and relativistic electron states agree 
qualitatively with the experimental results. 

Recently, Di Lazzaro and Missoni (1966) have followed Akhiezer and Berestetskii 
(1965) in directly evaluating the second-order S matrix element for the Compton 
process and, although electron binding is neglected in the intermediate and final 
states, the results explain the general behaviour of the scattering of gamma rays 
in heavy atoms. 

The  disagreement between the results of recent measurements of the scattering 
of medium energy gamma rays by the K electrons of heavy atoms (Brini et aE. 1960, 
Sujkowski and Nagel 1961, Motz and Missoni 1961, Varma and Eswaran 1962, Di 
Lazzaro and Missoni 1963, 1966, Shimizu et al. 1965, Ramalinga Reddy et al. 1967, 
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22 I. B. Whittingham 

Pingot 1968, 1969, East and Lewis 1969) confirm the need for a calculation which 
both accounts fully for the effects of the static nuclear field and is not restricted to 
low-energy photons. 

In  this paper the Furry picture (Furry 1951) is used to describe the interaction 
of an electron and a photon in the presence of a prescribed c number external field. 
Electron binding is taken into account by using the bound electron propagator and 
Dirac eigenfunctions for the initial discrete, and final continuum, electron states. 
Following Brown et al. (1954), the completeness properties of the spin spherical 
harmonics are used in $ 2  to separate the angular and radial dependence of the transi- 
tion amplitude, and the radial dependence of the bound electron propagator is 
obtained as the solution of an inhomogeneous differential equation. 

The summations over electron magnetic quantum numbers and photon polariza- 
tions are effected by the Wigner-Eckart theorem and the techniques of Racah algebra 
in 5 3, and the ensuing cross section for the incoherent scattering of unpolarized 
photons is expressed in terms of a set of radial matrix elements and combinations of 
angular momentum coupling coefficients. 

The  structure of the radial matrix elements is examined in $ 4  and their numerical 
computation discussed briefly in 5 5. 

Finally, in $ 6, results are presented for the scattering of 662 keV photons by 
the K electrons of lead, and a comparison is made with experimental and existing 
theoretical results. 

2. General formalism 
The rationalized relativistic unit system fi = m = c = 1 is used throughout. 

In  these unitsthe fine-structure constant is U. = e2/47 2: 1/137. The  scalar product 
of two 4-vectors is denoted by A .  B = X;= oAUB, = AoBo - A .  B and the conven- 
tions for the Dirac matrices are yi = p x i  (i = 1, 2, 3), y o  = p. Also, $ = $+yo 
where @ is the adjoint of the spinor $ and c* denotes the complex conjugate of 
a scalar c.  

The second-order S matrix element, in the Furry picture, for the interaction of a 
photon and an electron in the presence of the c number electromagnetic field A;(%) is 

where 

x exp( - ikI . x)t)i(x)} (2) 

are the amplitudes which correspond, respectively, to the absorption of the incident 
photon before the emission of the final photon and to the emission of the final photon 
prior to the absorption of the initial photon. The  electron states $(x) are solutions of 

(iy . a - e y  . Ae(x ) -  l}$(x) = 0 

where 8 = a/8x’, and K = (U,  k) and E = &‘)(&) = (0, E) are the 4-momentum and 
4-polarization vectors respectively of a photon in a state of circular polarization 
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denoted by p. The bound electron propagator Se(%, x’) is obtained as the solution of 
(Schweber 1961) 

{iy , 8 - ey . Ae(x)  - l}Se(x, x’) = - 2iS(4)(x - x’) 

subject to the boundary condition that Se(x, x’) is asymptotic to the free electron 
propagator S(x - x’) for large x. 

Introducing the amplitude 

P ) ( x ’ )  = 1 d4xSe(x’, x)y  . di)exp( - ik, . x)#~(x) (4) 

and noting that $(x) = # E ( ~ )  exp( -23%’) and Se(x’, x) = Se(d, X, xo’-xo) for a 
time-independent external potential, we obtain, on integrating over t = xo’ - xo 

SE) = S(E, + ~f -E ,  - wi)d:)  ( 5 )  
where 

( W ~ W , ) - ~ ~ ~  d3x’$E,+(~’)u . df)*exp( - ik, . x’)F(”)(x’). (6) c ioc 
2n 

JEZ, = - - 

The amplitude Fa)( x’) satisfies 

{HD($’)-(Ei$ wf))F(”(x’) S(’)(L%’) (7) 

S a ) ( x )  = -a . &)exp(ik, . x)#~,(x)  (8) 

~ , ( x )  = - iu . a+ eA:(x) +/I. (9 ) 

where 

and, for a scalar external field, the Dirac Hamiltonian HD( X) is 

The  inner electrons of heavy atoms can be accurately assumed to move in a spheri- 
cally symmetric potential V(r) = eA;(r) and therefore the eigenfunctions $E,( X) 
have the form (Rose 1961) 

Here, ( I ,  8, +) = ( I ,  Q) are spherical polar coordinates and 
spherical harmonics 

(10) 

the x[(Q) are the spinor 

xk((n)  = 2 C ( q j ; p - m ,  m)Yf-m(S2)xm. 
m 

The notation and phase convention for the Clebsch-Gordan coefficient 

C(j&.i; ml, m-md 
and the spherical harmonic Y;”(Q) is that of Rose (1957), the xm are the two com- 
ponent Pauli spinors, andj ,  I, and I-, are obtained from K by 

K K > O  K 
j = I K ~ - + ,  I = I, = I‘ = I-, = I,- 

L - 1  K < O  

The parameter K takes all non-zero integral values. The radial functions are solutions 
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of the Dirac equations 

where 
d/dr + K / P  - {E+ 1 - V(Y)}) 

A(y' E )  = ( E -  1 - V(Y) d/dr-K/Y 

Using the standard representation 

a = (: ;) 
for the Dirac matrices, the of being the 2 x 2 Pauli matrices, and introducing the 
components 

1 

and 
1 

of Q and E respectively in a spherical basis, Sa)($) becomes 

The  completeness properties of the spinor spherical harmonics allow the expansion 

and the use of the orthogonality properties of the x i  reduces equation ( 7 )  to the 
inhomogeneous Dirac equations (cf. Johnson and Feiock 1968) 

For heavy atoms it is necessary to consider only electron transitions to continuous 
states and, as no observation is madq upon the atomic electron after collision, the 
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asymptotic form of these states is unimportant. With the choice (10) for $Ef, the 
function 

II(")(x) = - at . E(/) exp(ik, , x)#Ef  (17) 
can be expanded in the same manner as Sa)( 3c) above, the expansion coefficients in 
this case being denoted L(Q)f(r) and M(Q)f(r). Consequently, with the orthogonality 
of the x{, the transition amplitude 

becomes 

3. Derivation and reduction of differential cross section 
With the expansion 

exp(ik . x) = 47 2 2 inj.(wY)Y;*(&)Y;(Q) 

where the j ,(wr) are the spherical Bessel functions of order n, the expansion co- 
efficients (13) and (14) are 

n m  

The matrix element 

IF/.(K, - Ki) = M ( Q )  [ u , i y ~ ( Q )  IxErict(Q) i (21) 
has been evaluated with the aid of the Wigner-Eckart theorem by Alling and Johnson 
(1965). They obtain 

where 

J , , ( K ,  -4 = ,'2[~1[jilC [flw(nz;jgIf)w(1:f2;9j,)C(nfj; P - P f - k  P i - t - 4  
f 

x C(j&f;  Pi, 8. (23 ) 
W(abcdef) is the Racah coefficient and [a] = (2a+ l)I/'. 

The corresponding results for the coefficients L(Q)ft and M(Q)k are obtained by 
the replacements (ut, k, )  + ( w f ,  kf), di)* --f df) and ( K J , )  + ( K ~ E ~ )  in the above 
results. 

The following calculations are greatly simplified by choosing the coordinate 
system such that pi is along the x axis and k, lies in the x--z plane and makes an 
angle 0 = cos-l(ki.kf) with the z axis. Thus 
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and 

where D,$(afly) is the Wigner rotation matrix for a rotation through the Euler 
angles tl, f l  and y. (The phase convention is that of Rose 1957.) 

The expansion coefficients can now be written 

and 

and the radial dependence is restricted to the factors 

which are obtained as solutions of 

the transition amplitude A;;) becomes 
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The  corresponding results for 
noting that 
tions (28) and (29) and by solving 

follow from the above results for d j p )  by 
= c t ( = ) ( ~ ~ p ~  f-) Kipf),  by interchanging wi and w f  in the radial func- 

As we are interested in the differential cross section for the scattering of un- 
polarized photons by all of the electrons in a specified atomic shell or subshell, no 
reference being made to the final state of the atomic electron, the transition probability 
per unit time 

1 
257 

dPf, = - 6( Ef  + Wf - Ei - U { )  [ A f t  1 'd3K, 

where df  ( = &(fa,' +A($) must be averaged over incident, and summed over final, 
photon polarizations; summed over all possible initial and final electron states and 
divided by the incident photon flux ( 2 ~ ) ~ ~ .  Thus the differential cross section for 
the scattering of unpolarized photons through an angle 0 into the solid angle d!2 
and energy interval dwf is 

do (257)' c c c W f 2 I d f t l 2 '  
-=- 
dn dwf PtPf KflLf U{ 

(35) 

With the expansion (32) for Afl, the differential cross section for all photons 
scattered into dQ is 

f 2Re{B2(KP ~/3)x$*x:$}] (36) 
where the integration over final photon energies is taken between the limits zero and 
Ei + w I  - 1, the B coefficients are 

B 1 ( E p K p )  = 2 a_'a)G*rx (U)W 
K P  K P  

and the parameters /3 and 7 denote the sets of indices (nlf'n.) and (ppipfpIpf) res- 
pectively. 

The  completeness relation 
477 2 C ; ' * ( L ) € y L )  = - Y ; * ( L ) Y p )  

p=*1 3 

for the vectors dl), d-l) and k in a spherical basis, is used to perform the summations 
over the photon polarizations. With the chosen orientation of the coordinate system, 
the polarization sums are 

2 e;r)*e(nP1) = 6 m,n - ~ m , o ~ n , o  (38) 
Pl and 

m,n m,O (39) 
or 
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In  order to sum over the magnetic quantum numbers, the Clebsch-Gordan series 
(Rose 1957-5 14) is used to reduce the products of rotation matrices to a single 
matrix of the form Dj,o (0, 0, 0) and the resulting products of Clebsch-Gordan 
coefficients are then summed over using the relations of Rose (1957-5 23). Details 
of these calculations are too lengthy to be included here but are gken in Whittingham 
(1970-PhD thesis unpublished). We obtain 

4 

B1(qKp) = i E ’ t f l - b f l ’  2 B;(+$) (40) 
1 = 1  

( i) 
with 

B : ( $ K ~ )  = - ( -  1)””s,,i6,,i.36([ji][j,][fJCf’])z 2 Z(iijnjjt)Z(ii’jnljf~t)P,(cos 0)  (41) 
t 

( ( t  -Zp)!}1/2 
x C(uvt; pp) ~ 

P;”(cos 0)  
\( t+2p)! 

and 

(iii) 



Incoherent scattering of gamma rays in heavy atoms 29 

In  these expressions, the constants b and U are given by b = 4( [f] [f’] [ f ]  and 
U = E’ +j+j+f+f’+J+f’ ,  P;(x) is the normalized associated Legendre polynomial 
of order n and degree m related to the rotation matrices via 

the coefficient 

Z(abcdef; ail) = [a][b][c][d]C(acf;  afl)W(abcdef) 

is a generalization of the Z coefficient of Biedenharn et al. (1952), and X(abe;  cdf; ghi) 
is the X coefficient of Rose (1957-$35). The  notation P,(cos 0) = P,O(cos 0) and 
Z(abcdef) = Z(abcdef; 00) is employed. The  limits on the summation parameters 
are determined from the triangle conditions for the vanishing of the angular momen- 
tum coefficients. 

The  B coefficients are real since E’ + n - f i  - n’ and ii‘ + n’ - 6 - n are even integers. 
In  addition, since a rotation of the coordinate system so that the new z axis is along 
k, merely interchanges and a(e) while leaving the physical system unaltered, it is 
clear that the B coefficients are invariant under the interchanges (j,Enff) c--) (j,E‘n’f’f ’) 
and the identity (49) follows immediately. 

4. The radial matrix elements 
The radial matrix elements X K g ,  defined by equation (34), involve the solutions 

SnfK(r) and RnSK(r) of the inhomogeneous Dirac equations (31). The boundary 
conditions upon the solution of these equations are determined from the asymptotic 
form of the amplitude F(x’)  introduced in $2.  This amplitude is the wave function 
of the electron after the first photon interaction and must, for large x’, either vanish or 
represent a free electron, depending upon whether the electron is in a discrete or 
continuum state as a result of the interaction. The radial equations (31) have the 
asymptotic solutions 

S(T) 2: a (exp( ur) + b exp( - U T ) )  

U 
R(r)  N - {a exp( ur) - b exp( - UT)}  

E+1 

where U = (1 - E2)l12. For the case in which the photon is emitted first, E = E,- wf 
and U is real for cot < 2. Consequently, the radial functions must vanish at infinity. 
For the absorption first case, E = E,+ co, and (r is pure imaginary for all incident 
photon energies greater than the binding energy B I  = 1 - E ,  of the atomic electron. 
In  this case we must therefore require SnfK(r)  and Rnrx(r) to be asymptotic to outgoing 
waves. 

The  method of Laplace integrals has been used (Johansson 1942, Forssner 1968) 
to obtain analytical solutions of (31) for the case where V(Y) is Coulombic and the 
initial state is that of a K electron. However, these solutions are unsuitable as they 
involve an expansion in ~ 2 ,  and immediate recourse will be made here to numerical 
methods of solution. 

As indicated by Brown and Schaefer (1956), the problem of numerical solution 
of inhomogeneous differential equations subject to two-point boundary conditions 
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can be avoided by using the variation of parameters method to solve the imhomo- 
geneous Dirac equations in the form 

The  functions 

hereafter denoted by OyK(y )  and m y K ( ~ ) ,  are the linearly independent sets of solutions 
regular at the origin and infinity respectively of the homogeneous Dirac equations. 
The  Wronskian of these solutions is denoted by A,(E) and is independent of Y. For 
the absorption first case, the solutions regular at infinity must be chosen to be asymp- 
totic to outgoing waves. 

In  terms of the coefficients 

and the integrals 

the radial matrix elements have the factorized form 

while the f-independent integrals are 

I n  these, and the following expressions, w = wi, w‘ = w f ,  E = E i + w i  for the 
absorption first case; w = w f ,  w‘ = w i ,  E = Ei- wf for the emission first case. 
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Insertion of (53) for X,, into (36) finally yields the differential cross section as 
a combination of the radial integrals I,, J,, U ,  and V,, ( y  = (Kn'n)), and the 32 
coefficients 

h h )  = 2 2 .i(.8).&mc(.BKP) (57) 
F rf' 

where K = 1, 2; i , j  = 1,  ..,, 4 and m = 4(i- l )+ j  = 1, ..., 16. That is 

where, for example 

and 

The radial integrals (55) and (56) involve several sets of continuum and discrete 
state solutions of the homogeneous Dirac equations. Before discussing these solutions 
some comments are required about the form of the potential function V(Y),  The 
major contribution to the radial integrals is expected from the region r < ljAk 
(Randles 1957), where Ak = / k i - k f l  is the momentum transfer to the atom. For 
medium to large angle scattering, where incoherent scattering is the dominant process, 
and for wi  -N 1, the momentum transfer is approximately unity and the interaction 
occurs mainly in the immediate neighbourhood of the nucleus. I n  this region the 
atomic wave functions differ from the pure Coulombic form only in normalization 
(Brysk and Rose 1958, Pratt 1960) and consequently the major effects of electron 
screening upon the differential cross section are restricted to a change in the initial 
bound state normalization factor. For 2 greater than 75, this change is of the order 
of O.Olyo and O*ly$  for K and L electrons respectively and there is no significant loss 
of accuracy by choosing V(r)  to be Coulombic. 

For V(r) = - a Z / r ,  the required radial functions can be expressed in terms of 
the confluent hypergeometric function ,F,(a, c, x). However, for the continuum 
states, the parameters a and x are complex and the computation of ,F,(a, c, x) in- 
volves the summation of a slowly convergent complex series. consequently we 
choose to integrate the Dirac equation directly for each required function, a procedure 
which has the added advantage that only minor alterations are required for the con- 
sideration of non-Coulombic potentials. 

5. Numerical integration 
The discrete state solutions Oy?)(y) and "y?)(r) behave as r i  ?, y = ( K ~  - ( z Z ) ~ } ~ ' ~ ,  

and exp( f hr), h = (1 -E2)1'2, for small and large r respectively. For large y and X 
it is essential to introduce the smoothed functions (Brown and Mayers 1959) 

( 0 ,  m ) ~ y g ) ( y )  = Y * Y  exp( ~hr)(O.")yjc")(r) (61) 

which satisfy the modified differential equations 

23'; = a ( y ,  y ,  h)?Y,(r) (62) 
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Here the upper and lower signs refer to the functions regular at Y = 0 and r = cc 
respectively, and y ' (r )  denotes differentiation with respect to Y. The  functions regular 
at the origin are obtained by outward integration of (62) from the origin, the starting 
values being generated by series approximations for iYyce)(r) near the origin. The 
functions regular at infinity are obtained by inward integration from a point rinf 
where the asymptotic form of the Coulombic solutions can be used as starting values. 
The determination of rlnf will be discussed later. 

For the case where the photon is first absorbed, the solutions Oy(")(r) are chosen 
to be the set of (real) continuum states which are regular at the origin and asymptotic 
to standing waves. These solutions increase as r7 until the point Y, N IKiIp, 
p = ( E 2  - 1)1121 where they become oscillatory with approximately constant ampli- 
tude, Following Pratt e t  al. (1964) and Schmickley and Pratt (1967), the smoothed 
functions 

Ody(a)(y)  = -./ Oy:)(y) 

are integrated outwards from r = 0 until the first maximum or minimum of Oyca) 
is reached, where a switch is made to the computation of O Y ( ~ ) ( ~ ) .  The starting values 
are again obtained from series approximations about the origin. 

The  solutions which are asymptotic to outgoing waves at infinity are evaluated 
from the combination 

IC (64) 

(65) m ( a )  0 (a )  - ' 0 ( a )  Y ,  (y) = Y , 1[ Y ,(~)ll,,eg 
of the normalized regular standing wave solutions Or!") and the irregular standing 
wave solutions [Oyp)Iirreg. The irregular solutions are computed by inward integra- 
tion of the differential equations from the point r = 120 where the potential can be 
neglected and the asymptotic (free field) solutions are valid. This integration is 
pursued to r = r, where a switch is made to the computation of the smoothed 
functions 

Od2(a) - / 0 (a)  , 
[ y, lirreg (66) ic l irreg - 

The differential equations are integrated with the fifth-order Adams-Bashforth- 
Moulton predictor-corrector system (cf. Smith and Johnson 1967), a modifier being 
used to replace the iteration of the corrector. The rapid propagation of initial errors 
that arises from the Y - ~  term in a(r, y ,  A) during the outward integrations is controlled 
by the use of the series expansions for the first 2(K l  points of the integration mesh. 
The expected constancy of the Wronskian of the two sets of solutions provides a 
useful check on the accuracy of the integration procedures. 

Integrals of the type OI,,(r) and @'InX(r) are smoothed and computed as solutions 
of their associated first-order differential equations (cf. Brown and Mayers 1959), 
while Bodes integration formula is used for the quadrature of the final state integrals 
I,, .Iy, U ,  and V / .  The practical upper limit rlnf and the integration interval h are 
determined from the asymptotic form of a typical integrand 
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of these final state integrals. For the emission first case, the choice rinf = 20/h,  
ensures that JC,E,(r) and jn,(w’r) have attained their oscillatory regions and that the 
integrand u(r) is exponentially decreasing. However, for the absorption first case, u(r)  
has the asymptotic behaviour of sin(br)/r for r = 20/h, and a convergence factor 
exp( - vr)  must be inserted. Computation of the integrals for several values of U and 
extrapolation to v = 0 is avoided by the use of the result of Zerby and Brysk (1966) 

m 

I = j u(r)dr = [l - (1 - exp( - ar)}n]u(r) dr  
0 

which is based upon a nth-order Lagrangian interpolation formula. The parameters 
a = v ~ + ~ - v ~  and n can be chosen for optimum convergence. 

The  most rapidly varying factor in the integrand (67) has a period of 277/lwi +pf] 
and Z n / l w f + p f + p / ,  wherep = {(Ei+uJ2- 1}1/2 andpf = (E?- l)l/z, for the emission 
first and absorption first cases respectively. For K shell scattering the choice h = 0.1 
therefore ensures that the integrations use at least 12 ordinates per period of the rapidly 
varying functions. 

Finally, a composite Simpson’s rule is used to integrate over the scattered photon 
energy w f  in terms of the momentum pf of the continuum electron. 

6. Results and discussion 
The present calculations of the differential cross section and the energy spectrum 

of the scattered photons are restricted to the important case of the scattering of 
662 keV gamma rays by the K electrons of lead and are presented in table 1. 

Table 1. Energy spectrum? and differential cross sectionsf for scattering 
of 662 keV photons by K electrons of Pb 

Energy spectrum 

\ pr(mc) 0.230 0.461 0.691 0.921 1.152 
B(deg)\w,(mcz) 1.071 0.996 0.881 0.737 0.571 

0 
20 
40 
60 
80 

100 
120 
140 
160 
180 

5.49 4.07 2.42 1.30 0.97 
10.5 7.75 4.50 2.04 1.00 

4-47 5.62 6.10 4.87 2.79 
1.60 2.37 3.78 4.79 3.72 
0.74 1.22 2.26 3.81 4.20 

0.24 0.53 0.96 1.70 2.84 
0.05 0.21 0.69 1.46 2.28 

11.9 10.3 7.05 3.84 1.93 

0.51 0.77 1.38 2.50 3.72 

0.03 0.19 0.56 1.22 2.37 

tRelativistic units x 10-5(2-92 x l o w z g  cm2 k e V l  sr- l ) .  
$Relativistic units x 10-5(1*49 x ~ O - ’ ~  cm2 sr-I). 

1.382 
0.391 

0.85 
0.88 
1-14 
1 *38 
1.78 
2.21 
2.87 
3.30 
2.84 
2.92 

1.613 
0.199 

0-80 
0.88 
0.93 
1 s o 1  
1 *07 
1 *14 
1 *49 
2.34 
2.76 
2.87 

Differential 
cross 
section 

1.75 
2.79 
3.94 
3.33 
2.75 
2.48 
2.21 
2.09 
1.89 
1.90 

In  5 4 the differential cross section was expressed as an infinite series in K, E ( < K )  

and K ~ ,  These series were truncated when the radial integrals had decreased suffi- 
ciently to ensure that the truncation error incurred was consistent with other sources 
of error within the calculation. The  largest errors are of the order of 0.10/, and arise 
from (i) the matching of the continuum irregular functions with the asymptotic 

3‘4 
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solutions and (ii) the convergence of the final state integrals for the absorption first 
case. With I K ~ ~ ~ J  = 8 and I ( K ~ ) ~ ~ ~ ~  = 4 most radial integrals had decreased by at 
least two orders of magnitude and the resulting error in the differential cross section 
is accordingly estimated to be approximately 176. 

The  angular dependence of the ratio da,/do, of the bound electron cross section 
doK and the free electron (Klein-Nishina) cross section da, is given in figure 1. 
The full relativistic results are significantly larger than the incoherent scattering 

0 w U , _  
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- 

0 40 80 I20 
P h o t o n  s c a t t e r i n g  angle ( d e g l  

Figure 1. Angular dependence of cross section ratio daK/dus for scattering of 
662 keV photons. Theoretical results: - present work Pb; - * - approxi- 
mate relativistic theory of Di Lazzaro and Missoni (1966) Au; - - - - incoherent 
scattering function of Shimizu et al. (1965) Pb ;  - - non-relativistic scatter- 
ing function of Sujkowski and Nagel (1961) Pb;  - . - relativistic scattering 
function of Sujkowski and Nagel (1961) Pb. Experimental results: 0 Sujkowski 
and Nagel (1961) Pb; 4 Motz and Missoni (1961) Au; '$ Varma and Eswaran 
(1962) Pb; % Shimizu et al. (1965) Pb; f Pingot (1968) Au; East and Lewis 

(1969) Au. 

function calculations and agree well with the experimental results for scattering angles 
below looo. The  decrease in the cross section ratio for larger angles is probably 
spurious since the major contributions to da, correspond to high values of the con- 
tinuum electron momentum (see table 1) for which the convergence of the K~ sum- 
mation is poorer. Available computing facilities do not allow any present impr0.i-e- 
ment in the calculation of these high-angle cross sections. 

The  large difference between the present relativistic calculations and the predic- 
tions of the three incoherent scattering functions clearly indicates that for heavy 
atoms it is not valid to factorize the transition probability into a term representing the 
interaction of the photon with a free electron, and a term describing the transition 
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made by the electron as a consequence of the momentum transferred to it from the 
photon. 

The  non-zero cross section for zero-angle incoherent scattering of photons by 
bound electrons is in contrast with that for a free electron where the energy and momen- 
tum conservation relations allow only coherent scattering. However, momentum is 
not conserved in the interaction of a photon with a bound electron and the energy 
conservation relation allows incoherent scattering at all angles provided the electron 
undergoes a transition. 

The  differential cross sections per electron for incoherent and coherent scattering 
from K electrons, and for Compton scattering by a free electron, are shown in 
figure 2. For zero-angle scattering the incoherent process is significant while small in 
comparison with the coherent process, but for scattering angles above 33" the inco- 
herent process becomes dominant with a maximum at 40". 

I I I I , I 1 

1 I , ,?-.y.-,4 ._ ._ I  1 I 

0 40 80 120 I60 
Photon scattering angle (deg)  

Figure 2. Differential cross sections for scattering of 662 keV photons: - K 
electron incoherent scattering in Pb (present work) ; - - - free electron scattering 
(Klein-Xshina); - - K electron coherent scattering in Hg (Brown and 

Mayers 19 5 7). 

The energy spectrum of gamma rays incoherently scattered by K electrons of 
heavy atoms has been measured by Varma and Eswaran (1962), Di Lazzaro and 
Missoni (1966) and East and Lewis (1969). Varma and Eswaran, and East and Lewis, 
found that the spectrum was broadened in relation to that of a free electron and that 
there was no significant shift of the peak of the spectrum from the free-electron 
Compton energy. However, Di Lazzaro and Missoni observed a peak shift of 
towards lower photon energies and a marked increase in the spectrum at low scattered 
photon energies. These features were supported by their calculated energy spectrum. 

The  energy spectrum of 1.296 mc2 photons scattered through 60" by the K shell 
of lead is presented in figure 3 and compared with the approximate non-relativistic 
spectrum of Schnaidt (1934). The  shape of the spectrum is in accordance with that 
measured by Varma and Eswaran, and East and Lewis, and does not exhibit any 
increase at low energies, Although this region corresponds to high momentum of the 
continuum electron, and consequently the region of least accuracy in the computed 
results, any significant change in the shape of the photon spectrum with improved 
accuracy seems unlikely. 
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Figure 3. Energy spectrum of 1.296 mc2 (662 keV) photons scattered through 
60" by K electrons of Pb : - relativistic (present work) ; - - non-relativistic 

(Schnaidt 1934). 

The relativistic energy spectrum is shifted by 109; from the Compton energy 
but in the opposite direction to that obtained by Di Lazzaro and Missoni. The  shift 
towards higher photon energies is in agreement with the early non-relativistic calcu- 
lations of Wentzel (1929) and Bloch (1934) which predicted an energy shift 

(WJ1)bound- ( q ) f r e e  = - b B / 4  
where B is the binding energy of the atomic electron and b is a numerical constant 
of the order of unity. A peak shift of loo,; for lead would require b = 1.3. The dis- 
agreement between existing measurements of the scattered photon spectrum is due 
to the difficulty of correctly selecting only those scattering processes which are accom- 
panied by the emission of a K x-ray, and any possible confirmation of a peak shift 
towards higher photon energies must await additional and improved experimental 
results. 
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